What is MAX MXene phase material

What is MAX phase materials?

MAX phase materials are novel layered carbon-nitride inorganic non-metallic materials with the electrical and thermal conductive qualities of metals, consisting of three elements with the molecular formula Mn+1AXn (n=1, 2 or 3), where M refers to the transition metal, A refers to the main group elements, and X refers to the elements C and N. MXene materials are graphene-like structures obtained by MAX-phase processing with two-dimensional transition metal carbides, nitrides, or carbon-nitrides.MAX/MXene materials are novel two-dimensional nanomaterials composed of carbon, nitrogen, oxygen, and halogens. These materials exhibit excellent electrical and heat conductivity as well corrosion resistance. This makes them suitable for a variety of applications including electronics, energy, environmental preservation, biomedicine and electronics.

What is MXene material phase?

MXene material is characterized with high specific surfaces, chemical stability, biocompatibility as well as tunable physical characteristics. They have many uses, such energy storage and transmissions, biomedical and electronic applications. MXene materials are used as electrodes for supercapacitors, anodes for lithium-ion cells, and in other energy applications. These materials have high energy storage, high power density and long cycle lives. MXene material can be used to remove heavy metals and organic pollutants from water, and also as a carrier for catalysts in catalytic reactions. MXene material can be used to carry drugs and as bio-imaging agent in the biomedical industry for drug therapy, medical imaging diagnosis and other purposes. MXene material can be used for electronics, such as transistors and field effect tubes. It has low power consumption, high electrical conductivity.

Material properties of MAX/MXene

Excellent electrical conductivity. MAX/MXene has a conductivity that is 100 times greater than copper. The good conductivity of MAX/MXene materials makes them a good choice for applications in energy storage and transmitting.

High-Specific Surface: MAX/MXene material has a very large specific surface area, several hundred square meters for each gram. This high specific area increases the adsorption of the material and makes it useful for environmental applications.

Good chemical resistance: MAX/MXene products have excellent chemical resistance and remain stable under harsh conditions such as acids, bases and high temperatures. This feature allows it to be used in a wide variety of fields including heavy metal ion removal, industrial wastewater treatment and adsorption.

Good biocompatibility. MAX/MXene can be used for biomedical purposes. MXene material can be used, for example, as a drug carrier to deliver drugs into the cells. This will enable drug therapy.

Physical Properties that are Tunable: By adjusting the chemical composition or structure of MAX/MXene, you can tune their physical properties. For example, by adjusting the chemical composition of an MXene material, its energy band structure can be changed, giving it the potential for semiconductor-prepared high-performance electronic device applications.

Applications of MAX/MXene material

Energy Storage and Transmission

The MAX/MXene material has excellent electrical conductivity that can be 100 times greater than copper. The high electrical conductivity of MXene makes it an attractive material for energy storage applications. MXene materials are also used as anode material for lithium-ion cells, which have lithium storage capacities up to hundreds of milliamperes-hours per kilogram, excellent cycle performance and multiplier performances.

Environmentally Friendly

MAX/MXene has a specific surface area that is several hundred square meters for each gram. This increased surface area enhances the material's adsorption abilities, making it valuable in environmental applications. MXene can remove heavy metals and organic pollutants from the water. MXene material can also be used in catalyst carrier materials for oxidation and reducton reactions, removing harmful substances from water and air.

Biomedical field

MAX/MXene material has good biocompatibility. It can be used as a biomedical materials. MXene material can, for instance, be used as drug carriers that deliver drugs to cells. MXene material can also be used to diagnose and treat diseases using medical imaging. MXene material can also be utilized to create biosensors capable of detecting biomolecules or cellular activity.

Electronics

MAX/MXene has a wide range of physical properties that can be tuned, allowing them to be used for high-performance devices. MXene material can be used in electronic devices, such as transistors and field effect tubes. MXene-based electronics have greater electrical conductivity than conventional silicon-based ones, as well as lower power consumption and improved mechanical flexibility. These electronic devices have many applications, such portable electronic devices or smart clothing. MXene material can also be used in the production of high-frequency RF devices, antennas, as well as other wireless communication equipment.

MAX/MXene materials are a type of new two-dimensional nanomaterials with excellent electrical conductivity and thermal resistance, as well as biocompatibility and corrosion resistance. MAX/MXene has a wide range of applications due to its unique properties. These include energy storage and transmission as well as environmental protection, biomedicine, and electronics. By advancing research into MAX/MXene and developing new preparation techniques, we will discover and use more applications.

Supplier of Max phase materials

We offer high purity and ultrafine MAX phase powders Such as Cr2AlC. Ta2AlC. Ta4AlC3. Ti3AlCN. Ti2AlN. Ti4AlN3. Nb4AlC3. Click on the product of your choice to send us an inquiry.

Concrete Retarder A Miraculous Additive That Changed the Construction Industry

Concrete, an ordinary building material, has profound effects on our daily lives. Concrete is widely used for a variety of buildings and projects - from skyscrapers and bridges to roads and public facilities, to home improvement. Technically, it is difficult to make concrete plastic enough for construction. It is necessary to introduce a concrete retarder, a remarkable additive.

Concrete Retarder Set Retarder or is an additioanl that reduces the hydration rate and heat of hydration for cement or gypsum, and increases the setting time of the concrete. Through scientific chemistry, it effectively solves concrete's speed problem.

Concrete performance has become more and more important in recent years with the rapid expansion of the construction sector. Concrete retarder, as an important additive to concrete, plays a significant role in improving concrete's performance. Concrete retarders will make concrete stronger and last longer in order to maintain construction performance. This is especially important in the summer heat or when the construction site needs to be in direct sunlight for long periods of time.

Concrete retarders are not only good for extending concrete's plasticity, but they also have many other benefits. First, it reduces the hydration rates and heat generated during the hardening processes of concrete. Second, retarders also help improve concrete's ability to resist chloride erosion, freeze/thaw resistance and crack resistance.

In general, the selection and adjustment for retarder depends on the actual construction conditions and concrete performance requirements. The amount of retarder should be adjusted to suit the actual requirements. In addition, the use of other concrete additives should be considered by retarders to get the best possible construction result.

Concrete retarder, in general, is an important addition to construction materials. The scientific and reasonable chemical principle and the practical application of its effect have proven to be important in improving concrete performance, construction conditions, project quality, etc. The progress of construction and science, as well as the development of science, gives us reason to think that concrete retarders will be more important in the future. They can bring convenience and safety into our lives.

Application Fields of Tungsten Rods

Tungsten Rods in Various Applications

The tungsten bar is a rod shaped material, which has many benefits, such as its high density, thermal conductivity, corrosion resistance, etc. It is widely employed in the manufacture of high-temperature heaters and high precision components. Here is a comprehensive introduction to tungsten's applications in various fields.

Industrial sector

In the industrial sector, tungsten is widely used in high-temperature heating devices, high temperature pipelines, and chemical equipment.

High-temperature Heating Equipment

As heating elements of high temperature heating equipment, the tungsten rods are excellent in thermal conductivity. They also have a high melting point and can operate for a very long time. The tungsten rods used in high temperature heating equipment, such as electric heaters, laser printers, and induction furnaces can provide high temperatures.

High-temperature pipeline

Tungsten rods are used to manufacture high-temperature pipework because of their excellent corrosion resistance. For high-temperature pipe manufacturing, tungsten is used in the steel, ceramic, chemical and steel industries. These pipes can withstand high temperature and chemical corrosion. This ensures stability and safety in production.

Chemical equipment

High density makes tungsten rods ideal for chemical equipment manufacturing. Tungsten is used to make reaction vessels and storage containers for highly corrosive chemicals like sulfuric acid. These devices can resist corrosion from chemicals and increase the efficiency of chemical production.

Construction field

In architecture tungsten rods are used to support structural elements and decorate.

Structural Support

They are suitable for supporting large building structures because of their high density, high strength and resistance to corrosion. Tungsten Rods are used in the support of large buildings, such as high-rises and bridges. These structures are designed to support heavy loads, which ensures the safety and stability for buildings.

You can also decorate your home by using this

Tungsten Rods are available in a variety of colors and textures, making them perfect for the decoration of high-end structures. Tungsten rods serve as decorative materials in hotels, theaters and other places. They are used for railings and stair handrails. These decorative materials can give a building a noble feel and increase its artistic value.

Medical field

The non-radioactive and non-toxic properties of tungsten make them ideal for the manufacture of medical instruments, implants and orthotics.

Surgical Instruments

The non-toxic and radioactive properties of tungsten make them ideal for the manufacture of surgical instruments. Tungsten rods can be used in the manufacturing of surgical instruments, such as forceps and scalpels. The instruments must be disinfected at high temperatures and under pressure. Tungsten has excellent corrosion resistance, high temperature stability and can withstand these conditions.

Implants and orthotics

Also, tungsten rods are used to make medical devices including implants and orthotics. Tungsten Rods are used in the manufacture of orthotics and implant materials, such as artificial joint, fracture fixators, dental braces, and dental brackets. These medical devices require high biocompatibility, corrosion resistance and tungsten is the perfect manufacturing material.

Other fields

In addition to these fields, tungsten bars are also used for the following applications:

Laboratory equipment and Diagnostic Equipment

Materials for high-level laboratory and diagnostic devices are made of tungsten. tungsten rods are used to manufacture high-level equipment for laboratory and diagnostic equipment.

High-precision components

High-quality components can be manufactured using tungsten rods due to their high density, high melting points, and excellent processing properties. Tungsten is used in manufacturing high-precision components for the electronics industry, precision machines, and many other fields. These components need to be stable and precise. Tungsten rods can provide this.

Weapons and ammunition

Due to their high density and toughness, tungsten rods are ideal for making weapons and ammunition. As the warheads of ammunition such as armor piercing shells or kinetic energy bombs, Tungsten rods are used. Tungsten rods are a good material for ammunition that needs high penetration or kinetic energy.

Nuclear Industry

In the nuclear sector, tungsten bars are suitable for treating nuclear waste due to their high temperature resistance, high density and corrosion resistance. Tungsten is used to create reflective layers and as structural materials for reactors and waste treatment equipment. tungsten rods have properties that can withstand high temperatures and corrosion in these structures and equipment.

RBOSCHCO

RBOSCHCO, a global chemical material manufacturer and supplier with more than 12 years of experience, is known for its high-quality Nanomaterials. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leading manufacturer of nanotechnology products, dominates the market. Our expert team offers solutions that can improve the efficiency of different industries, add value and help them overcome various challenges. If you want to find out more about tungsten rods Send an email at: sales1@rboschco.com

Water-reducing agent solution for these three

The water-reducing agent should be used with concrete admixture, which will reflect the water-reducing effect. Cement quality is therefore a direct factor of the actual effect of water-reducing agent.

When dealing with different "problem" types of cement, different strategies are required:

High alkali cement

High-alkali is a cement type with a large amount of alkali. Alkali in high-alkali is usually higher than that of conventional cement.

The high-alkali cements have a high degree of alkalinity. This can impact the performance. High-alkali Cement can encourage the setting reaction, which is beneficial to the early development of strength in concrete. High-alkali Cement can also increase the fluidity of cement, making it more workable and easier to pump.

But there are also some issues with high-alkali clinkers. As an example, high alkali cements can reduce the efficiency of water-reducing agents and cause concrete to lose its slump faster. High-alkali cement may also lead to corrosion and carbonation problems in concrete.

High-alkali Cement can benefit from water-reducing agents that contain a higher content of sodium sulfate. High-alkali cement contains a high amount of alkali, which accelerates C3A's dissolution. Sodium sulfate reacts with C3A, forming AFt crystals. This improves the fluidity of the cement mortar.

Low-alkali sulfur-deficient cement

Low alkali-sulfur cement is a cement with a lower sulfate level than normal cement. Ordinary cement is high in sulfate. It reacts with water and the sulfate forms crystals that cause cracking.

Reduced sulfate cement can reduce the alkali silica reaction in concrete (alkali aggregate reaction). The alkali silica reaction is a reaction between the cement and the aggregate that causes expansion and cracking. The use of low-alkali cements that are sulfur-deficient can help reduce this reaction, and increase the durability and life of the concrete.

Due to the lower sulfate contents, water reducers work less well with low alkali-sulfur cement. Water-reducing agents can cause concrete to lose slump quickly if they are used in excess. In this case, the conventional method of using water-reducing agents may not work. Instead, it is best to choose a water reducing agent that contains sulfate.

High C3A Content Concrete

Cement with a high C3A-content is one that has a higher content of C3A. C3A is a mineral present in cement, which reacts to water and forms an expanding substance during cement hydration. Cements with a high C3A percentage have a faster setting time and higher early strength. They are ideal for projects that need rapid setting.

Cement with high C3A levels can cause some problems. C3A and sulfate react to form sulphoaluminate. This can cause concrete to expand or crack. In humid environments, cements high in C3A are susceptible to producing corrosive calcium-sulfate precipitates, which can have a negative impact on the durability of concrete and steel structures.

Cement with high C3A will have a greater ability to bind water-reducing agents. This will result in a reduction of the fluidity of concrete and its slump. If you are using a water-reducing chemical, choose a water-reducing chemical that has a high sulfate content or a retarder which contains hydroxycarboxylate. These will help reduce C3A adsorption and improve concrete fluidity.

There are two types of products that reduce water: the first is a water-reducing naphthalene agent and the second is a water-reducing polycarboxylic agent. The main difference in water reduction is the naphthalene. It is high-efficiency, and polycarboxylic is high-performance. For general foam concrete, the naphthalene cubic addition is between a few hundred g to a kilogram.

Applications of Nickel-based Alloy Rod

Nickel alloy rod contains many other elements including iron, chrome, and molybdenum. Nickel-based alloys are more resistant to corrosion and stable at high temperatures than conventional iron alloys. This makes them popular in many industrial and engineering applications.

Petrochemical Industry

Nickel-based rods have become a common material in the petrochemical industries. In petroleum cracking, nickel-based rods are used for reactor manufacturing. They can withstand high pressure and temperature conditions and offer good corrosion resistance. Nickel-based rods can also be used for manufacturing equipment like pipelines and containers during petrochemical processes.

Nickel-based alloys rods are used primarily in the petrochemical industries to produce high-temperature, high-pressure, reactors, towers, and heat exchangers. It is essential to select materials with high resistance to corrosion, as well as high temperature stability, when working in environments that have high temperatures, pressures, and corrosive mediums. Nickel-based rods are a material that has excellent properties, and is used to manufacture petrochemical machinery.

Nuclear Industry

The nuclear industry can use nickel-based alloys rods as manufacturing materials. These rods are highly resistant to corrosion and high temperature. The nickel-based rods, with their excellent high-temperature stability and corrosion resistance, can be used as structural materials or shells for nuclear fuel component components.

In nuclear reactors nickel-based alloys rods are used mainly as materials to manufacture fuel components. These components have to be able work in environments with high temperature, high pressure, and radioactivity. These components must be highly resistant to corrosion and high temperature. Nickel-based rods are a material that has these properties, and is therefore a preferred choice for the manufacture of nuclear fuel elements.

Aerospace field

Nickel-based alloys rods are used primarily in aerospace to make key components such as aviation engines and rocket motors. Nickel-based materials are used in aerospace because of their high-temperature resistance and excellent stability.

In aviation engines nickel-based alloys rods are used primarily as a manufacturing material for turbine blades and guides vanes. These components have to be able to withstand high temperatures, pressures and speeds. These components must have excellent high temperature strength, creep strength, corrosion resistance. Nickel-based alloys rods possess these properties, and are therefore one of aviation engine manufacture's preferred materials.

Automotive Manufacturing sector

Nickel-based alloys rods can be used in the manufacture of high-performance automobile components. Nickel-based rods are used in the manufacture of high-performance automotive components, such as engine cylinder blocks or cylinder heads.

In the automotive industry, nickel-based rods are primarily used to make key engine components, such as cylinders, cylinder heads and pistons. Materials with high strength and corrosion resistance are needed for these components, which will be working in high-temperature and high-pressure environments. Nickel-based alloys rods possess these properties, and are therefore one of automotive engine manufacturers' preferred materials.

Medical device field

Medical devices can benefit from the biocompatibility of nickel-based alloys and their corrosion resistance. This ensures safety and reliability.

Medical devices is a broad field that includes a variety of medical devices including surgical instruments, implant, diagnostic equipment, rehabilitation materials, etc. Amongst these medical devices nickel-based rods are used primarily as raw materials to manufacture high precision and high quality medical devices. In surgical instruments, for example, surgical knives and forceps that are made from nickel-based metal rods provide excellent durability and cutting performance. Orthopedic and cardiovascular implants made with nickel-based rods are biocompatible and have excellent mechanical properties. They can treat a wide range of orthopedic or cardiovascular diseases.

Other fields

Nickel-based alloys rods can be used for a variety of applications, including construction, power and electronics. Nickel-based rods are used in power transmission and structural support for high-rise building. They can also provide outstanding strength and durability. Nickel-based rods are useful for manufacturing key components in the electronics sector, such as circuit boards and materials to shield electromagnetic fields.

About KMPASS

KMPASS is a global supplier and manufacturer of high-quality nanomaterials, chemicals, and other materials. We have over 12 year experience. The company export to many countries, such as USA, Canada, Europe, UAE, South Africa, Tanzania,Kenya,Egypt,Nigeria,Cameroon,Uganda,Turkey,Mexico,Azerbaijan,Belgium,Cyprus,Czech Republic, Brazil, Chile, Argentina, Dubai, Japan, Korea, Vietnam, Thailand, Malaysia, Indonesia, Australia,Germany, France, Italy, Portugal etc. KMPASS, a leader of nanotechnology manufacturing, dominates the market. Our expert team offers solutions that can help industries improve their efficiency, create value and overcome various challenges. Send an email to sales2@nanotrun.com if you are interested in Inconel 718 Powder.

What is Lithium stearate powder

Lithium stearate is a crystalline form of lithium.

Lithium stearate has the chemical formula LiSt. It is a white powder that is solid at room temperatures. It is highly lubophilic and forms high light transmission at low concentrations. This compound is soluble only slightly in water and is readily soluble when heated to room temperature in organic solvents, such as acetone and ethanol. Lithium Stearate is stable and thermally safe at high temperatures because it has a melting point and flashpoint. The lithium stearate also has good chemical resistance and is resistant to acids and bases, as well as oxidants, reductants and reducing agents. Lithium is less toxic than other metals, but should still be handled with care. An excessive intake of lithium can lead to diarrhoea or vomiting as well as difficulty breathing. Wearing gloves and goggles during operation is recommended because prolonged exposure to lithium can cause eye and skin irritation.

Lithium stearate:

Surfactant: Lithium Stearate Surfactant, lubricant, and other ingredients are used to make personal care products, such as shampoos, soaps, body washes, and cosmetics. It has excellent foaming properties and good hydrolysis stabilty, resulting in a gentle and clean washing experience.

Lithium stearate has an important role to play in polymer syntheses. It can be used both as a donor and a participant in the formation of polymer chains. These polymers have good mechanical and chemical properties, making them ideal for plastics, rubber fibers, etc.

Lithium stearate can be used as an ingredient in cosmetics. It enhances moisturization, and makes the skin feel softer and smoother. The antibacterial and antiinflammatory properties of lithium stearate can also help with skin problems.

Paints & Coatings: Lithium is used to thicken and level paints & coatings. It helps control the flow, and properties of final coatings. It is resistant to weather and scratches, which makes the coating durable.

Applications of lithium stearate include drug carriers, excipients, and stabilizers. It can enhance the taste and solubility and stability of medications.

Lithium stearate has many uses in agriculture, including as a carrier for fertilizer and a plant-protection agent. It increases the efficiency of fertilizers and improves plant disease resistance.

Lithium stearate may be used in the petrochemical sector as a lubricant or release agent. As a catalyst in petroleum cracking, lithium stearate improves cracking yield and efficiency.

Lithium Stearate Production Process :

Chemical synthesis method

Lithium stearate can be synthesized through a series a chemical reactions. In order to get the lithium metal reacting with the stearate, they are heated together in an organic solvant. After washing and drying, the pure lithium-stearate product is obtained.

Following are the steps for synthesis.

(1) Lithium metal and stearate in organic solvents, such as ethanol heated stirring to fully react.

(2) The reaction solution must be cooled in order to precipitate lithium stearate.

(3) Wash the crystal with water and remove any lithium stearate particles.

The dried crystals are used to make lithium stearate.

Chemical synthesis is a mature technology that offers high efficiency in production and product purity. However, organic solvents have an environmental impact and waste is generated during production.

Methode de fermentation biologique

In biological fermentation, microorganisms such as yeast are used in the medium to produce lithium. This method works on the principle that microorganisms produce stearic and react with metal ions, such as lithium ions, to create lithium stearate.

These are the steps that you will need to take in order to produce your product.

(1) The microorganisms will be inoculated onto the medium containing the precursor substances to fermentation culture.

(2) The filtrate is used to produce a solution of stearic acetic acid.

(3) Add metals (such as the lithium ions) into the solution with stearic to ensure that they fully react.

(4) The reaction mixture is separated, then washed and dried.

The benefits of biological fermentation include environmental protection, less waste discharge and a longer production process. However, the conditions for production are also higher.

Prospect Market for Lithium stearate

The application of lithium in personal care will continue to be important. As a lubricant or surfactant it is important in soaps. shampoos. body washes. and cosmetics. As people's standards of living improve and the cosmetics sector continues to expand, lithium stearate demand will gradually rise.

Second, the use of lithium stearate for polymer synthesis has also increased. It can be used both as a donor and a participant in polymer chain formation. As polymer materials science continues to develop, the demand of lithium stearate increases.

Lithium stearate's application in agricultural, petrochemical, pharmaceutical and other fields is also growing. In the pharmaceutical sector, lithium stearate may be used as a carrier, excipient or drug stabilizer. In agriculture, the lithium stearate is used to protect plants and as a carrier for fertilizer. In the field of petrochemicals, lithium isostearate may be used as an lubricant or release agent. In these areas, the demand for lithium will increase as technology advances.

But the outlook for the lithium stearate market is not without its own challenges. In order to produce lithium metal, it is necessary to use a more expensive production process. Aside from that, the applications of lithium is limited, with a concentration in agriculture, petrochemicals, pharmaceutics, personal care, polymer syntheses, pharmaceuticals and petrochemical products. To expand the scope of application and market demand for lithium stearate, it is important to continually develop new applications and markets.

Lithium stearate powder price :

Many factors influence the price, such as the economic activity, the sentiment of the market and the unexpected event.

You can contact us for a quotation if you're looking for the most recent lithium stearate price.

Lithium stearate powder Supplier :

Technology Co. Ltd. has been supplying high-quality chemical materials for over 12 years.

The chemical and nanomaterials include silicon powders, nitride particles, graphite particles, zinc sulfide particles, boron grains, etc.

Contact us today to receive a quote for our high-quality Lithium Stearate Powder.

More than a hundred schools in the UK have been closed due to the risk of collapse

In the UK, more than 100 schools were closed because of the danger of collapse

In the UK, many schools use Autoclaved aerated cement (RAAC). This is a concrete material that is lighter.

In 2018, the roof of a school in southeast England fell down. Later, it was discovered that RAAC material had been used for the roof as well as the buildings. This raised safety concerns.

BBC reported that RAAC materials were widely used from the 1950s until the mid-1990s in areas such as roof panels, and had a lifespan of around 30 years.

According to reports, the risk of building collapse is not only present in schools, but also in hospitals, police station, and other public structures. RAAC material has been found.

The Royal Dengate Theatre at Northampton is temporarily closed after RAAC material was found.

According to NHS, RAAC has been detected in 27 hospital building.

The NHS chief has been asked for measures to be taken to prevent collapse.

BBC reported that since 2018 the British government has warned schools to "fully prepare" for the possibility of RAAC in schools and public buildings.

The Independent reported Jonathan Slater - a former senior education official - that Sunak, Prime Minister in 2021, approved budget reductions to build schools while he was the chancellor of treasury.

Nick Gibb is a senior official at the Department of Education. He said that the Department of Education asked for PS200m annually for school maintenance. Sunak, then the chancellor, only provided PS50 million per year.

The report also states that despite Sunak having promised to renovate at least 50 schools every year, in the main reconstruction plan of the government only four schools were renovated.

The British National Audit Office chief also criticised this crisis. He claimed that the Sunak government had adopted a "plaster-method" of building maintenance.

He believes the government's underinvestment has forced schools to close, and that families are now "paying the cost".

Paul Whitman is the secretary-general of National Association of Principals. He said that the public and parents would perceive any attempt by government to shift blame to individual schools, as a "desperate attempt by the state to divert its attention from their own major errors."

Whitman claimed that the classroom has become completely unusable. Whitman blamed the British Government for the situation. "No matter what you do to divert or distract, it won't work."

London Mayor Sadiq khan said that the government should be open and transparent. This will reassure parents, staff, children, and others.

BBC reported schools in the UK were pushing forward with inspections and assessments. Children who had been suspended because of school building issues will be temporarily housed, or they can learn online.

Nano silver substitution trend is irreversible

Nanowires to replace infrared first
Due to the rapid growth of the display industry, as well the high cost and shortage of ITO films and indium, the industry has looked for alternatives, such as nanowires. Silver nanowires, among other alternatives, are the most advantageous due to their technology and maturity. Additionally, they are flexible and can be used to replace other materials that conduct electricity with a flexible display for east wind.

Nanosilver has the most important role in Nanosilver. Nanosilver has excellent antibacterial properties and is safe.

"With the present process, silver nanowires are first to be used on a large scale as an alternative for infrared touchscreen technology. Du said, ""The substitute is already obvious." "The large-size products made of silver nanowires are gaining customers' recognition.

Infrared is the main touch control technology used in electronic whiteboards. Infrared transmitter tube and receiving tube is arranged on the raised border so that infrared optical networks are formed.


The next big flashpoint is 2020

The global smartphone market, with its huge population, has begun to slow. However, the small and mid-sized markets, due to their large base of users, are also vital for silver nanowires technology to become mainstream.

"The smartphone industry needs revolutionary innovation, whether it's facial recognition, the full screen or the hot AI feature," du said. "Whether it is facial recognition, a full-screen, or the new AI feature, smartphone innovation needs to be revolutionary," du said. For now, foldable smartphones are a good thing.


The last step to breaking through nanowire

The technology of silver microwires is not widely used. The production, manufacture, storage, and patent of the silver nanowires is considered to be an important factor that limits their development.

It is not possible to replace ITO films with silver nanowires. Future application scenarios will offer the biggest opportunities.

( Tech Co., Ltd. ) is an experienced silver nanoparticles producer with over 12 year experience in research and product development. Contact us to send an inquiry if you are interested in high quality silver particles.

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

Tungsten alloy heavy plate has low thermal expansion. It is also known for its high density, radiation resistance, thermal conductivity, and electrical conductivity. It is used widely in the aerospace and medical industries.

About Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate:
Powder metallurgy produces compact ingots from high purity tungsten. After powder metallurgy, a series further deformations are made and heat treatments are applied until the final products have been produced.

Properties:
Low thermal expansion and high density, with high thermal conductivity and electrical conductivity. Perfect performance in environments of high radiation exposure.

Applications:
Widely used by the aerospace, medical, and military industries to produce machining tools such as lathes and dimes.



We have a wide range of sizes and grades in tungsten-alloy plates. Contact us for any of your needs.


Payment & Transport:

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Properties

Alternative Names Tungsten Alloy Plate
CAS Number N/A
Compound Formula N/A
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 18.5g/cm3
Purity 99.95%
Size It is a great way to customize the look of your home.
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Mass N/A
Monoisotopic Mash N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Germanium Sulfide (GeS2) is a semiconductor compound with the chemical Formula GeS2. It is easily soluble when heated alkali is used, but not in water.Particle size: 100mesh
Purity: 99.99%

About Germanium Sulfide (GeS2) Powder:
Germanium Sulfide also known as Germanium Sulphide and Germanium Disulfide. GeS2 is the formula of germanium disulfide. It is unstable, easy to sublimate and oxidize, and dissociates in humid air, or an inert atmosphere. Inorganic acids (including strong acid) and water are insoluble.
Germanium disulfide is 2.19g/cm3. Germanium Sulfide consists primarily of Germanium disulfide(GeS2) powder. Melting point is 800 deg C. Germanium disulfide, like many other metal sulfides that are closely related, is the subject of many researches who are researching its potential for energy storage applications such as solid state batteries.
The germanium diulfide crystal has an orthogonal structure. Each cell contains 24 molecules with the following dimensions: A = 11.66a; B = 22.34A; C = 6.86A. Accuracy 1/2%. The space group (C2V19) is FDD. Eight germanium-atoms are arranged on a dual axis. All other atoms take up a general position. These 12 parameters were determined. The germanium atoms are connected with four sulfur atomic trihedrons at an atomic separation of 2.19A. The angle of the two sulfur atoms is 103 degrees.

If you're interested in purchasing Germanium Sulfide (GeS2) Powder , please send us a message to receive the latest Germanium Sulfide Price.

High Purity Germanium Sulfide Granule Powder:

Nature: white powder Crystal structure is orthogonal. Density is 2.19 grams per cm3. Melting point 800 . Unstable high-temperature sublimation or oxidation. In humid air or an inert atmosphere, dissociation. The molten state has a brown, transparent body with a 3.01g/cm3 density, is not soluble in water or inorganic acids, including strong acid, but soluble when heated alkali. By the sulfur vapor and germanium powder from the system. The intermediate products of germanium metallurgy.

germanium sulfide CAS number 12025-34-2
germanium Sulfide Molecular Formula GeS2
germanium sulfide Molar mass 136.77g mol-1
germanium sulfide Appearance White crystals with a translucent appearance
germanium sulfide Density 2.94 g cm-3
germanium sulfide Melting point 840 degC (1,540 degF; 1,110 K)
germanium Sulfide Boiling Point 1,530 degC (2,790 degF; 1,800 K)
Germanium sulfide - Solubility in Water 0.45 g/100mL
germanium sulfide Solubility soluble in liquid ammonia

What is Germanium Sulfide GeS2 Powder produced?
Germanium disulfide may be produced by converting hydrogen sulfide into tetrachloride using a hydrochloric solution.
Germanium disulfide can be prepared by combining germanium with sulfide or hydrogen sulfide.

Applications Germanium Sulfide GeS2 Powder:
Solid-State Batteries: Germanium disulfide, like many compounds closely related, is of particular interest to researchers and manufacturers.
This material can be used to produce cathodes in certain types batteries.
The vulcanized microparticles have great potential to be used as high-performance batteries containing lithium-sulfur.
Electrology: For researchers working on energy storage technology Germanium disulfide is a material that has similar characteristics. It can be used to produce other components and materials in electronic technology.
Catalysts: Germanium disulfide, like many other sulfides has the unique ability to produce more complex chemicals for high-tech devices and other chemical reactions.
As with many materials related to nano-level sulfur, it has many unique optical properties. However, these properties are still not well understood.
This makes the research interest in this material involve a wide range of industries and fields, from electron-to-photovoltaic to imaging techniques.

Germanium Sulfide (GeS2) Powder Storage Conditions
Germanium Sulfide GeS2 is affected by damp reunion, which will have an adverse effect on the powder's dispersion and use. Therefore, it should be packed in vacuum and kept in a dry and cool room. GeS2 powder must also not be exposed to stress.

Packing & Shipping Germanium sulfide powder GeS2
The amount of Germanium Sulfide powder GeS2 will determine the type of packing.
Germanium Sulfide powder packaging: Vacuum packed, 100g,500g or 1kg/bag or 25kg/barrel or as per your request.
Germanium Sulfide Powder Shipping: Can be shipped via air, sea, or express, as quickly as possible after payment receipt.


Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with over 12 years' experience in the production of high-quality nanomaterials. These include boride powders, nitride particles, graphite particles, sulfide particles, 3D printing materials, etc.
Looking for high quality Germanium disulfide powder Send us an email or call to make an appointment. ( brad@ihpa.net )

Germanium Sulfide Properties

Alternative Names germanium(IV) sulfide, germanium disulfide,
germanium disulphide, GeS2 powder
CAS Number 12025-34-2
Compound Formula GeS2
Molecular Mass 136.77
Appearance White Powder
Melting Point 800
Boiling Point 1530
Density 2.94 g/cm3
Solubility In H2O 0.45 g/100mL
Exact Mass 137.86532

Germanium Sulfide Health & Safety Information

Sign Word N/A
Hazard Statements N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
Transport Information N/A

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

Copper products exhibit good electrical conductivity as well as thermal conductivity. They are also ductile, resistant to corrosion, and have a high wear resistance. They are widely used by the electricity, electronics and energy industries.

Metal Alloy High Purity Copper Plate, 8.92g/cm3,
Surface:
Brush, hairline, mirrors, oiled, milled.

Dimension:


Applications:
Interior decoration: ceilings, walls, furniture, cabinets, and elevator decoraction.

Payment & Transport:

Metal alloy 8.92g/cm3 high purity polished copper plate properties

Alternative Names Copper Plate
CAS Number N/A
Compound Formula Curiosity
Molecular Mass N/A
Appearance N/A
Melting Point N/A
Solubility N/A
Density 8.92g/cm3
Purity 99.95%, 99.99%, 99.995%
Size
Bold point N/A
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young Modulus N/A
Exact Milligram N/A
Monoisotopic Mash N/A

Health & Safety Information for Metal Alloy 8.92g/cm3 High Purity Polised Copper Plate

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Hafnium Powder is a metal made from hafnium. The most common method to prepare hafnium from sponge hafnium involves hydrogenation and deshydrogenation. Purity>99%
Particle Size : 5-10 Micron

Hafnium Nanopowder:
Hafnium Hafnium on the periodic table : Group 4, Atomic Number d-block, Mass 178.586.
Hafnium a shiny silvery metal. It's resistant to rust because it forms an impenetrable film of oxide on its surface. Hafnium metallic is not affected by acids or bases except hydrofluoric. Hafnium element can be difficult to separate because they have the same atomic sizes.
Hafnium Powder is a dry, light gray metallic powder. The dry powder reacts when it comes into contact with water, producing hydrogen. This is a flammable liquid. The reaction could produce enough heat for hydrogen to ignite.

Hafnium can be found in zirconium minerals. It is a ductile, brightly glistening metal. It is extremely strong and resistant to corrosion. Zirconium, hafnium and other metals have nearly identical chemical properties. (Hafnium however is twice as dense.) This makes them difficult to separate. Hafnium's properties is affected by zirconium.

Hafnium For Sale:
It is one of the most trusted Nano Hafnium HF Powder suppliers. Please feel free to contact us at any time for the most recent Hafnium Price.

Appearance of hafnium and its description:
It is a silvery metal crystal that has a metallic shine.
hafnium powder MF: Hf
hafnium powder Molecular weight: 178.49
hafnium powder Density: 13.31 g/cm3
Hafnium powder Melting temperature: around 2227
Hafnium powder Boiling points: about 4602

Product characteristics of hafnium:
It is a good anticorrosive, resistant to acid and alkali erosion, and soluble in hydrofluoric acids to form fluoride compounds. Hafnium at high temperature can be directly combined to oxygen, nitrogen, other gases, to form nitride. Hafnium in the air is stable, powdered Hafnium easily burns.


The invention relates a superfine, high purity hafnium and a method for preparing it.
Preparation includes the following:
1..The hafnium dioxide powder and reducing agents powder in a molar ration of 1:1 to 1:2 were mixed evenly, and packed into a crucible.
2. The crucible should be placed in the reaction vessel, covered and vacuumed, then filled with argon to wash, heat and reduce, followed by constant temperature reduction.
3. After vacuum, argon is pumped to cool the vacuum;
4 washing: first, pickling and then using deionized filtered water to wash the product. Then, the product is screened before drying.

Nano Hafnium Use:
Hafnium powder can be used to produce hafnium-alloy materials such as hafnium-sputtering targets. It has high heat absorption properties and is exothermic (1 times faster that zirconium, titanium and other alloys), and it can be used for the structure of missiles and jet engines.

Hafnium's refractory properties make it a useful material for turbojet aircraft blades used in freezing point pressure jet engine. Hafnium powder is also used to manufacture valves, high-temperature components and nozzles.

Hafnium rods are used for the majority of nuclear reactor control rods.
Hafnium alloys are used in the production of tantalum, niobium and iron. C103 alloy is used for liquid rocket thruster nodes, like the main engine in the Apollo lunar module. C103 consists of 89 % niobium and 10 % hafnium.

Hafnium, because of its high heat resistance and affinity with oxygen and nitrogen is an excellent scavenger for oxygen and nitrogen. It can be used in both incandescent lights and inflatable lamps. Hafnium, which can release electrons in the air, is also used for plasma cutting.

Storage condition of Hafnium Hf powder:
Hafnium Hf Powder cannot be exposed to the air. The powder should be packed in vacuum and kept in a dry and cool room. Hf Powder should also not be exposed to stress.

Packaging hafnium:
- High strength wooden case: bags with double-layer plastic seals, 50 kg/wooden box.
2) If the customer has special packaging requirements we can package the goods accordingly.


Technology Co. Ltd., () is an established global chemical material manufacturer and supplier with over 12 years' experience in the production of high-quality Nanomaterials. This includes boride powders, nitride particles, graphite particles, sulfide particles, 3D printing materials, etc.
You can contact us by sending an email. (brad@ihpa.net)

Nano Hafnium Hf Powder Properties

Alternative Names hf, hafnium, hafnium, powder price
hafnium powder supplier, hafnium powder msds.
CAS Number 7440-58-6
Compound Formula Hf
Molecular Mass 178.49
Appearance white fine powder
Melting Point 2227
Solubility N/A
Density 13.31 g/cm3
Purity >99%
Particle Size 5-10 Micron
Bold point 4602
Specific Heating N/A
Thermal Conduction N/A
Thermal Expander N/A
Young's Module N/A
Exact Mass N/A
Monoisotopic Mash N/A

Nano Hafnium HF Powder Health & Safety Information

Safety Advisory N/A
Hazard Statements N/A
Flashing point N/A
Hazard Codes N/A
Risk Codes N/A
Safety Declarations N/A
RTECS Number N/A
Transport Information N/A
WGK Germany N/A

Metal Alloy 18.5g/cm3 Polished Tungsten Heavy Alloy Plate

High Purity Germanium Sulfide GeS2 Powder CAS 12025-34-2, 99.99%

Metal Alloy 8.92g/Cm3 High Purity Polished Copper Plate

High Purity Nano Hafnium Hf powder CAS 7440-58-6, 99%

Metal Alloy 18g/cm3 High Density Tungsten Alloy Ball

High Purity Molybdenum Boride MoB2 Powder CAS 12006-99-4, 99%

Metal Alloy High Density Tungsten Alloy Rod Grind Surface Tungsten Alloy Bar

High Purity Nano Ag Silver powder cas 7440-22-4, 99%

High Purity Zirconium Nitride ZrN Powder CAS 25658-42-8, 99.5%

High Purity Tungsten Silicide WSi2 Powder CAS 12039-88-2, 99%

High Purity Titanium Sulfide TiS2 Powder CAS 2039-13-3, 99.99%

High Purity 3D Printing Powder 15-5 Stainless Steel Powder

High Purity Calcium Nitride Ca3N2 Powder CAS 12013-82-0, 99.5%

High Purity Chromium Diboride CrB2 Powder CAS 12007-16-8, 99%

Supply Magnesium Granules Mg Granules 99.95%

High Purity Silicon Sulfide SiS2 Powder CAS 13759-10-9, 99.99%

High Purity Colloidal Silver Nano Silver Solution CAS 7440-22-4

Chromium Sulfide Cr2S3 Powder CAS 12018-22-3, 99.99%

High Purity 3D Printing 304 Stainless Steel Powder

High Purity Tungsten Boride WB2 Powder CAS 12007-09-9, 99%

Newstatayoung is a trusted global chemical material supplier & manufacturer with over 12 years experience in providing super high quality chemicals and Nano materials such as graphite powder, boron powder , zinc sulfide , nitride powder, Calcium nitride, Ca3N2, 3D printing powder, and so on.


And our innovative, high-performance materials are widely used in all aspects of daily life, including but not limited to the automotive, electrical, electronics, information technology, petrochemical, oil, ceramics, paint, metallurgy, solar energy, and catalysis. Our main product list as following:

Metal and alloy powder: boron, nickel, silicon, copper, iron, aluminum. chrome, silver

Boride powder: magnesium boride, aluminum boride, boron nitride, boron carbide, hafnium boride;

Sulfide powder: Molybdenum sulfide, zinc sulfide, bismuth sulfide;

Oxide powder: ITO, ATO, iron oxide, titanium oxide, manganese oxide, copper oxide;about.jpg

Carbide powder: titanium carbide, manganese carbide, titanium carbonitride, hafnium carbide;

Nitride powder: Aluminum nitride, hafnium nitride, magnesium nitride, vanadium nitride;

Silicide powder: hafnium silicide, molybdenum silicide, tantalum silicide;

Hydride powder: Hafnium hydride, vanadium hydride, titanium hydride, zirconium hydride.etc.

Have any questions or needs, please feel free to contact Newstatayoung.